Fast Online detection of outliers using least-trimmed squares regression with non-dominated sorting based initial subsets
نویسندگان
چکیده
منابع مشابه
Fast Sparse Least-Squares Regression with Non-Asymptotic Guarantees
In this paper, we study a fast approximation method for large-scale highdimensional sparse least-squares regression problem by exploiting the JohnsonLindenstrauss (JL) transforms, which embed a set of high-dimensional vectors into a low-dimensional space. In particular, we propose to apply the JL transforms to the data matrix and the target vector and then to solve a sparse least-squares proble...
متن کاملPEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION
Pedomodels have become a popular topic in soil science and environmentalresearch. They are predictive functions of certain soil properties based on other easily orcheaply measured properties. The common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. In modeling natural systems such as s...
متن کاملTrimmed Least Squares
We consider two methods of defining a regression analogue to a trimmed mean. The first was suggested by Koenker and Bassett and uses their concept of regression quantiles. Its asymptotic behavior is completely analogous to that of a trimmed mean. The second method uses residuals from a preliminary estimator. Its asymptotic behavior depends heavily on the preliminary estimate; it behaves, in gen...
متن کاملA fast algorithm for robust regression with penalised trimmed squares
The presence of groups containing high leverage outliers makes linear regression a difficult problem due to the masking effect. The available high breakdown estimators based on Least Trimmed Squares often do not succeed in detecting masked high leverage outliers in finite samples. An alternative to the LTS estimator, called Penalised Trimmed Squares (PTS) estimator, was introduced by the author...
متن کاملRobust Estimation Using Least Trimmed Squares
A robust procedure is proposed, starting from least trimmed squares as the initial estimator. The asymptotic distribution of the two-step and multi-step estimators is derived. This allows the use with a pre-specified efficiency under normality. It is argued that the good performance, together with the simplicity of the procedure, should make this the robust estimator of choice for applied work.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Statistics and Probability
سال: 2015
ISSN: 2307-9045
DOI: 10.14419/ijasp.v3i1.4439